Learning Semantic Hierarchies via Word Embeddings
نویسندگان
چکیده
Semantic hierarchy construction aims to build structures of concepts linked by hypernym–hyponym (“is-a”) relations. A major challenge for this task is the automatic discovery of such relations. This paper proposes a novel and effective method for the construction of semantic hierarchies based on word embeddings, which can be used to measure the semantic relationship between words. We identify whether a candidate word pair has hypernym–hyponym relation by using the word-embedding-based semantic projections between words and their hypernyms. Our result, an F-score of 73.74%, outperforms the state-of-theart methods on a manually labeled test dataset. Moreover, combining our method with a previous manually-built hierarchy extension method can further improve Fscore to 80.29%.
منابع مشابه
Syntactico Semantic Word Representations in Multiple Languages
Our project is an extension of the project “Syntactico Semantic Word Representations in Multiple Languages”[1]. The previous project aims to improve the semantical representation of English vocabulary via incorporating the local context with global context and supplying homonymy and polysemy for multiple embeddings per word. It also introduces a new neural network architecture that learns the w...
متن کاملVisually Aligned Word Embeddings for Improving Zero-shot Learning
Zero-shot learning (ZSL) highly depends on a good semantic embedding to connect the seen and unseen classes. Recently, distributed word embeddings (DWE) pre-trained from large text corpus have become a popular choice to draw such a connection. Compared with human defined attributes, DWEs are more scalable and easier to obtain. However, they are designed to reflect semantic similarity rather tha...
متن کاملOnline Learning of Interpretable Word Embeddings
Word embeddings encode semantic meanings of words into low-dimension word vectors. In most word embeddings, one cannot interpret the meanings of specific dimensions of those word vectors. Nonnegative matrix factorization (NMF) has been proposed to learn interpretable word embeddings via non-negative constraints. However, NMF methods suffer from scale and memory issue because they have to mainta...
متن کاملAutoExtend: Combining Word Embeddings with Semantic Resources
We present AutoExtend, a system that combines word embeddings with semantic resources by learning embeddings for non-word objects like synsets and entities and learning word embeddings which incorporate the semantic information from the resource. The method is based on encoding and decoding the word embeddings and is flexible in that it can take any word embeddings as input and does not need an...
متن کاملSemi-Supervised Instance Population of an Ontology using Word Vector Embeddings
In many modern day systems such as information extraction and knowledge management agents, ontologies play a vital role in maintaining the concept hierarchies of the selected domain. However, ontology population has become a problematic process due to its nature of heavy coupling with manual human intervention. With the use of word embeddings in the filed of natural language processing, it beca...
متن کامل